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Abstract

Deep neural networks (DNNs) are powerful tools in

computer vision tasks. However, in many realistic scenarios

label noise is prevalent in the training images, and overfit-

ting to these noisy labels can significantly harm the gener-

alization performance of DNNs. We propose a novel tech-

nique to identify data with noisy labels based on the dif-

ferent distributions of the predictive uncertainties from a

DNN over the clean and noisy data. Additionally, the be-

havior of the uncertainty over the course of training helps

to identify the network weights which best can be used to re-

label the noisy labels. Data with noisy labels can therefore

be cleaned in an iterative process. Our proposed method

can be easily implemented, and shows promising perfor-

mance on the task of noisy label detection on CIFAR-10 and

CIFAR-100.

1. Introduction

In the last decade Deep neural networks (DNNs) have

proven their predictive power in many supervised learning

tasks with complex data patterns. Especially when the train-

ing set is large, representative, and correctly labeled, DNNs

are the current state-of-the-art on several learning tasks. Un-

fortunately, the latter assumption does not hold in many re-

alistic cases (e.g. medical imaging, crowd-sourced label-

ing), and DNNs have been shown to overfit on noisy labels,

leading to poor generalization performance. For example,

[34] shows that DNNs can easily fit randomly assigned la-

bels on the training set, which leads to poor test perfor-

mance. Therefore, it is important to detect and correct for

noisy labels in the training set.

We propose an iterative label noise filtering process,

based on the predictive uncertainty of the training images.

Ensembles [18] and MC dropout [8] are used to obtain un-

certainty estimates for each image. We show that the un-

certainties of the noisy images and the uncertainties of the

clean images follow two different distributions, enabling the
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detection of potentially noisy labels. After the detection of

the noisy labels, the detected image could be taken out of

the training set, its weight on the loss could be decreased,

or it could be relabeled through an oracle or any appropriate

relabeling approach.

2. Related Work

In the literature various approaches have been proposed

to deal with label noise. [27] and [16] utilize sample

weights, derived from the performance of the network

on a validation set, to reduce the influence of noisy la-

bels. Other approaches exploit additional networks to as-

sign sample weights by learning the structure of the label

noise [31, 17, 12]. [2, 24, 14, 35, 23, 26] propose adjusted

loss functions to diminish the influence of noisy labels dur-

ing training. [4] excludes potential noisy labels from train-

ing, with the disadvantage that information from the data is

thrown away. Further approaches have recently been pro-

posed to tackle the issue of label noise in image classifica-

tion tasks, [29, 32, 11, 30, 21, 19, 33, 22]; however, to the

best of our knowledge, none of the proposed methods uti-

lize model uncertainty to detect and filter out label noise in

image classification tasks. [1] concurrently explore a very

similar method to the one proposed in this paper by using a

mixture of beta distributions over the training loss of noisy

vs clean images.

3. Methodology

In this section we explain our iterative, uncertainty-

based, noise filtering process. In Section 4 the proposed

method is then evaluated on two different noise patterns:

Symmetric and Pair noise. In the former, k% of the train-

ing labels are randomly flipped to another label (k ∈
[20, 40, 60]). In the latter, k% of the labels are systemati-

cally flipped to the subsequent class label. Both noise pat-

terns are very realistic in image classification tasks and cur-

rently discussed in the literature [12]. The Pair setting is

generally more difficult, especially when k is greater than

50%, as for a given real class, the class with the majority

of labels is not the real class (e.g. a majority of the images

with real label ‘dog’ are labeled cat).
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Uncertainty acquisition Let y = gW (x) be the out-

put of a neural network with weights W and input x, and

u = h(y|gW , x) be the uncertainty of the model for its pre-

diction y given the input data x and the model gW . Since

it has been shown that a single softmax score of one classi-

fier does not serve well as an uncertainty measure [9, 7, 13],

we use three recent methods to easily obtain uncertainty es-

timates: Deep Ensembles [18] with M members, Monte-

Carlo dropout (MC-dropout [7]), using T forward passes,

and a combination of both [28].

Having the predictions y = gWt

m (x), with t = 1, · · · , T
forward passes and m = 1, · · · ,M classifiers, one needs a

statistic u(y) to quantify the uncertainty. The goal is to find

an uncertainty statistic over the predictions gWt

m (x) which

depicts a high uncertainty value if x has a noisy label and a

low value if x has a clean label. Many such statistics exist

which have been successfully used in different settings [3,

28, 6, 10, 20, 25].

We compare different statistics over the predictions y =
gWt

m (x) given by the multiple forward passes, including

BALD [15], Variation-Ratio, the standard deviation over the

predictions std(gtm(x)) (averaged over all classes), and the

mean over the predictions. For the mean we take the most

likely of the k classes of the softmax vector, i.e. for brevity

we denote gtm(x) = maxk g
Wt

m (x). [13] show that this max-

imum softmax probability is useful to distinguish between

correctly and wrongly classified images.

Noisy label detection We investigate the ability of the

aforementioned uncertainty metrics to distinguish between

noisy and clean labels. Our goal is to identify an epoch T1
in which the uncertainty of the noisy labels is significantly

higher compared to the uncertainty of the clean labels. Fig

1 exhibits the ability of a given model type and a given un-

certainty measure to detect noisy labels. At each training

epoch, the training images with the highest p% uncertainty

are selected, i.e. Xp := {x : gWt

m (x) ≥ xp}. The propor-

tion of images in this subset (p = 0.9) with a noisy label is

plotted on the y-axis. Note that this value should be scaled

against the baseline noise level, i.e. if the baseline noise

level is 40%, the baseline ratio given by random sampling

would be 40%.

For both the Symmetric and Pair setting on CIFAR-10,

the averaged softmax value of the predicted class and the

Variation Ratio result in the highest selectivity (other uncer-

tainty measures not shown). Interestingly, the combination

of MC-Dropout with an Ensemble is essential to obtain both

a high selectivity and a robustness to long training times;

using just MC-Dropout results in a lower peak ratio than an

Ensemble, but when using an Ensemble with no stochastic

forward passes the high selectivity lasts for only an epoch

or two before rapidly tapering off.

The optimal uncertainty threshold is highly dependent
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Figure 1: Ability to detect CIFAR-10 training images with noisy labels

over the course of training. The Y-axis is the percent of images in the subset

of the X% most uncertain images that have noisy labels. The different

colored-curves correspond to the model type used, and follow the format #

of classifiers / # of stochastic forward passes per classifier. The subcaptions

follow the format: noise level; type of noise (P for pair, S for symmetric);

uncertainty threshold (i.e. for 10% on CIFAR-10, this would be the 5000

most uncertain images); uncertainty measure (VR=variation ratio).
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Figure 2: Expectation Maximization (EM) fits of two beta distributions

(EM-clean / EM-noisy) to the averaged softmax values of images with

clean and noisy labels. The overall distribution and its mixture components

are plotted via kernel density estimations (kde all, kde-noisy, kde-clean)

and their fit with a parametrized beta distribution (beta noisy, beta clean).

on many things, e.g. the data set, noise type, noise level,

and model architecture. Within one experiment, as there

are less noisy labels as the iterative process progresses, it

makes sense to be more selective with the threshold. Instead

of taking a fixed p% of most uncertain images, a possible

extension is to model the distributions of the uncertainties

of the noisy and clean images. Empirically, a mixture of

two beta distributions fits rather well to this task , and after

using the Expectation Maximization (EM) algorithm [5] to

fit the distributions (Fig 2), the threshold can be chosen to

be more selective, i.e. the number of clean images identified

as noisy can be explicitly controlled for.

Relabeling of noisy labels After noisy labels are de-

tected, the goal is to relabel these images with the true label.

The simplest approach is to use the network’s prediction for

a noisy image before the network has overfit to the noisy la-

bels. Looking at Fig 3, this begins to happen at a relatively

early phase, and ultimately, the network learns to predict the
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(a) Accuracy of the noisy and clean

CIFAR-10 training images over the

course of training (40% symmetric

noise). Black curves correspond to

training subsets with known noise.
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(b) Mean uncertainty (std. dev. of

softmax vectors) over all correctly

classified CIFAR-10 training images

over the course of training (40%

symmetric noise).

Figure 3: Relabeling of noisy images.

noisy labels perfectly. However, around epoch 15 the net-

work has learned enough from the clean images to correctly

relabel 80% of the noisy images (purple curve), before the

overfitting to the noisy labels has begun.

Of course this information is not available during train-

ing, as it requires knowledge of the true label for noisy im-

ages. Thus two alternative approaches are proposed: the

first uses a random subset of training images (e.g. 1000

images), in which the label noise is known (e.g. through

expert relabeling; this is a common setting in the literature,

e.g. [27]), and that the network is trained on. Fig 3a shows

that it is not required to know the true noise level in the data

set; the curves behave similarly, and are sufficient proxies to

identify at which epoch to use the predictions for relabeling.

The second approach leverages the behavior of certain

uncertainty estimates over the course of training, and re-

quires no ground truth subset. The std. dev. over the soft-

max outputs of the multiple forward passes, averaged over

all training examples, first briefly sinks, before beginning

to rise as the predicted class of the noisy labeled-images

switches from the true label to the noisy label (Fig 3b).

This trend can be leveraged to roughly identify a good point

to relabel using the predicted class. Averaging the forward

passes within one classifier and taking the std. dev. over the

resulting 5 vectors (blue curve) provides a better heuristic

for identifying the ideal relabel time than taking the stan-

dard deviation over all 125 total forward passes.

4. Experimental results

As an initial proof of concept experiment, we tackle the

task of noisy label detection on CIFAR-10 and CIFAR-100,

using the simple convolutional network described in [3].

The noisy images are identified by taking the top 10% of

most uncertain images (p = 0.9) (as in Fig1a). In Table 1

the relabeling is based on the predicted softmax at an epoch

determined by the criteria presented in Fig 3b. The results

of 5 iterations of this process are shown, starting with 40%

symmetric noise. The algorithm is able to reduce the num-

ber of noisy labels by almost half. However, the accuracy of

the trained networks do not rise (on a full clean data set this

Iter. Acc. # Noisy Images Noise Prop. Det. Prec.

1 0.775 20000 0.400 0.917

2 0.775 16803 0.336 0.852

3 0.775 13979 0.280 0.722

4 0.773 11804 0.236 0.576

5 0.767 10773 0.215 -

Table 1: Iterative relabeling based on predicted softmax on CIFAR-10.

Det.Prec = Detection Precision

Iter. Acc. # Noisy Images Noise Prop. Det. Prec.

1 0.773 (0.477) 20000 (20000) 0.400 (0.400) 0.943 (0.868)

2 0.796 (0.513) 15284 (15660) 0.306 (0.313) 0.902 (0.756)

3 0.812 (0.535) 10775 (11881) 0.216 (0.237) 0.796 (0.611)

4 0.826 (0.557) 6797 (8825) 0.136 (0.177) 0.625 (0.451)

5 0.847 (0.572) 3671 (6572) 0.074 (0.131) -

Table 2: Iterative relabeling with oracle relabeling on CIFAR-10 and

CIFAR-100 (in parentheses). Det.Prec = Detection Precision

network achieves 87% accuracy). Further analysis reveals

that the images identified as noisy and correctly relabeled

simply are not helpful in making the network generalize

and be more robust to the label noise; the images that re-

main noisy, which are more difficult to relabel, are those

important for increasing the classifier’s performance.

To highlight the effectiveness of the approach at detect-

ing noisy labels, the experiment is repeated with oracle re-

labeling, in which all identified noisy images are given the

correct true label (Table 2). Now the accuracy of the net-

work rises as the number of noisy labels drops. At the end

of the process, 16329 out of 20000 detected images were

correctly identified as noisy and relabeled. As expected,

the precision of the detection drops as there are fewer noisy

labels in the data set, yet at each iteration a fixed 10% of

images (i.e. 5000) with the highest uncertainty are selected.

5. Conclusion

We have shown that the predictive uncertainty given by a

combination of an ensemble and MC-Dropout is very effec-

tive at identifying noisy labels under multiple noise settings

and different datasets. Further work is focused on improv-

ing both the detection and the relabeling. For the former

case, the beta-distribution fit will be further extended to in-

crease the precision of detection at later stages in the algo-

rithm. Possible extensions to the relabeling include using a

majority vote instead of the predicted softmax, or assigning

multiple labels to an image that is difficult to relabel, with

the idea that at least one of them is the correct one. This

can be done for a single model, or across model (i.e. each

member of the ensemble gets a different label for an image).

Finally, the methods will be tested on more data sets and

network architectures, and compared to the state-of-the-art

results from the literature.
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